
UDC 532.516 

DETERMINATION OF THE FLOW FIX,D IN A REGION AIJACENT TO A 
STREAMLINED BODY AT SMALL REYNOLDS NUMBER 

PMM Vol. 41, N-" 6, 19’77 , pp. 1072 -1078 
M. M. VASIL’EV 

( Moscow ) 
( Received June 25, 1976 ) 

A steady flow of a viscous incompressible fluid past a body of finite dimensions 
and a sufficiently smooth boundary is studied at small Reynolds number 2h. 
The asymptotic behavior af the velocity of flow is investigated at the distance 

R 4 h-l from the body. It is proved that the velocity can be represented 

in the form of a sum of the velocity in the linear Oseen approximation, which 
is an analytic function of the Reynolds number, and of a section of the asymp- 
totic series in terms of the Reynolds number. The coefficients of this section 

are determined as solutions of certain boundary value problems in the Stokes 
approximation. An explicit formula is obtained for the flow past a sphere, 

which coincides with the known internal expansion due to Proudman and 

Pearson. 

1. A steady flow of a viscous incompressible fluid past a body B is described 
by a system of Navier-Stokes equations with the boundary conditions 

u.Vu+gradP=&-Au, divu=O (1.1) 

u (s = uo, lim u = urn - (1, 0,O) 
IXl-- 

(S denotes the surface of the body > . We obtain the following boundary value 

problem for the perturbation velocity v = u - u, : 

Av - 2h $ - Bhgrad p = 23,~. Vv, divv = 0 
1 (1.2) 

v Is= vo, Iim v=O 
lxI-- 

We know [l] that if the surface S and function v. =uo - u, both satisfy 
certain conditions of smoothness ) a solution of the boundary value problem in question 
exists, for any value of the Reynolds number in the class of functions with the bounded 
Dirichlet integral 

i IVu12dx< C, D=R3\B 
D 

In what follows, we shall use the following two Babenko’s theorems [z], 

Theorem l.If S E C2+g, 6 > 0, v. E C2 [Sl, then aReynolds number 
Re, exists such that the solution of the boundary value problem (1.1) is given by the 

formulas 
v (x, h) = j. (2h)” v(k) (x, h), (1.3) 
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which converge when .% < Re,. 
If S and v0 appear in the compact families, then inf Re, > 0 where 

the lower edge is taken along these families. 
Theorem 2. Let the conditions of Theorem 1 hold. Then a Reynolds num - 

ber Re, (0 < Re, < oo) exists such that for 2h < Re, the solution of the 
problem (1.1) with a bounded Dirichlet integral is unique. 

The functions v(O) (x, h), p(O) (x, h) in (1.3)represent a solution of the 
boundary value problem for a homogeneous system of Oseen equations (which is obtained 
from the system (1.2) by discarding the nonlinear term 2hv - Vv) with inhomo - 
geneous boundary conditions from (1.2)) and v(k) (x, A), p(k) (x, h) (k > 1) is the 
solution of the inhomogeneous Oseen system 

Av(k) _ 2h 2$!_ _ 

3 k-1 

2hgrad p(k) = 
cc 

,!i) 
&k-i-j) (1.4) 

1 
1 

i=l j4 
3Xi 

divv(k) =O 

with homogeneous boundary conditions. 
An expansion of the form (1.3 ) was used earlier in [3 ] in the course of proving 

the existence of solution of a streamlined flow at small Reynolds numbers in the class 

of functions satisfying the condition v = 0 ( 1 x 1 -'). 
8, To obtain an asymptotic expression for the velocity at small Reynolds num- 

hers , of the form 

v (xv A) = j. an (V U’“‘(x) + 0 IaN+ (A)] 
(2.1) 

where {a, (h)} denotes an asymptotic sequence with 3L -+ 0, we must expand in 
i the coefficients of vck) (x, h) in the first formula of (1.3). We cannot however 

obtain expansions of the form (2.1) for the whole region D ; we can only construct 
separate expansions in the regions {x: 1 x 1 < h-l) n D and {x: 1 x I > h-l} 
and in the intermediate region. An asymptotic formula for the velocity away from the 
body valid for any value of the Reynolds number was obtained in [4,5 1. 

According to the first formula of (1.3 ) we have 

v (x, h) = v(O) (x, h) + 2hv(l) (x, h) + 0 (h2) 

Let us expand in 3L the function 

v(1) (x, h) = 1 G (x, y; h) uf’(y, A) g (Y, h) 6’ 
D 

(2.2) 

where G (x, y; h) is a Green’s matrix. Here and henceforth we assume that repeated 
indices indicate the summation from 1 to 3. Assuming that 

G 6, Y; A) = H ( x7 y; A) + V (x, y: A) 
where H (x, y; h) is the matrix of the fundamental solutions of the Oseen equations, 
we shall seek the regular part of the Green’s matrix V (x, s; A) in the form of the 

potential of a double layer. Taking into account the fact that by replacing urn by 
-UC0 we transform the system of Oseen equations into its conjugate, we can write 
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(n is the unit vector of the exterior normai to the surface S) 

S==fp-- I 

4~IY--1:1 > 
where the potential was constructed using the rne~*d.~i~en by Babenko 
When A, = 0 , this construction yields an unique solution of the integral equation 
for the potential density 

d q’rj (xt 2) + \ K,, (Z, 5) qrnj (x, 5) do, = - H,j (xt 2) (2.4) 

s 

3 _ The integral (2.2 ) can be represented in the form of a sum of the following 
two integrals : 

11 (x1 A) = \ H (x, y; hl $‘(y, A) g (y, A) dy 
n 

r&J) = \ V(x, y:h)uP)(y,h)~(y, h)dy 
iI 

We know that v<Q) and ~~~~~~~~ are both analytic functions of h when 

h z 0. This follows from the fact that if vt”t is written inth.efom oftbe pteential 

of a double layer, 

v(“’ (y) = \ K ( Y, z; A) 9 (4 do, (3.1) 

s 

then we obtain a linear integral equatian for the potential density q (z) in which 

the kernel and the right-hand side are analytic functions of h when h = 0 and the 

corresponding homogeneous equatmn has 5nfy a trivial soluti5n. Similarly we prove 
the analyacity of the function %T (x, y; A) at h = 0 which will be used to de- 

termine the asymptotics of the integral 1, (x, h). 
Let us describe the domain of integration as a unification of the following re- 

gions : D1 = {y: I'y 1 < 2~) ,I D (20 is the diameter of the body B), 

l.?s = {y: 2a < 1 y 1 K< h-l) and D3 =- (y: [ y 1 > h-l}. Using theanalyti- 

city of Via) and b(O) /d&, we can show that 

Jr(x,h)= 5 Hfv@t *v~~*~~~y = &(X,Of + Ufh) 

IA 

*) Babenko K. I. Theory of perturbation of the stationary flows of a viscous incom- 

pressible fluid at small Reynolds numbers. Preprint of the Inst. of Applied Mathematics, 

AS SSSR, No. 79, 19’75. 
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Consider the integral 

54 = 
s 

H (v(o). VvC”)) dy, II4 = Dz U D3 (3.2) 

D4 

We obtain its asymptotics by expanding the kernel K (Y, 2; A) in(3.1) into a series 
in Z and integrating with respect to z , this yields 

v?)(y) = AjHij (y) + A & + AjJc 2 (Y) + * * -, Aj = 2?40' (3.3) 

where Pi”) is the j- th coordinate of the force vector acting on the body B in 
the Oseen approximation. Substituting the expansion (3.3 ) into (3.2). we obtain 

J4 (x, 1) = .i4 (x7 A) + 14 (x, A) 

j4i (X7 A) = A,& 
s 

aHjm 
Hij (X - Y) Hkl (Y) ayr~ (Y) dY 

Let us represent the integral j, in the form of a sum of two integrals j2 and j3 
taken over the regions D, and D3 respectively. Since 

we use the estimates of the fundamental solution uniform in h 

1 Hij (X) I< C 1 X I-‘, 1 VHij (X) l < C I X I-*‘1 [S (X) + I]-‘/% 

to conclude that 

lj3KG \ Iyl-“‘b(y)+ l]“hdy\( 
D, 

co 

cz 1 p-‘izdp i [p (1 - cos 0) f i]-‘h sin 8 de < Ch 
A-I 0 

where spherical coordinates are used in the last inequality. 
Next we consider the integral j,. Using the expansions 

Hkt (XI a) = Hk, (X, 0) + a - ‘;;’ (XT O) + haykl (x, a) 

‘ykl (Xv a) = 0 ( 1 X I), yijk (Xv A) = 0 (1) 
we obtain 

izi = A&, 
s 

IiT+j (X - Y, O)Hkr (Y, 0) %(Y.WY + (3.4) 
JX 

We note that replacing in the first term of (3.4) the region of integration Da 
by D, introduces an error 0 (h) , andthe resulting integral will be independent of h. 
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Consequently 

jzi = A,& 
s 

if‘ 
H,j (x - Yt O> H&l (Y, 0) yyjrn -(Y, WdY + 

fl 

B& In f f 0 fh) 

and we have 

Iri (G A) = J,i (2, 0) -I- B& In + + 0 (h) (3.5 1 

Let us write l,i (x, 0) in terms of the velocity of flow $8) , in the Stokes ap - 

proximation , i, e. in terms of the solution of the system 

AV - aa grarf p = 0, div v = 0 

with the boundary conditions from (1.2 > , Using the formula given in the paper quoted 
at the footnote of page 1092 

we can show that 

and consequently 

(3.7 1 

4, Consider the integral 

I, (x, h) = \ V (y, x; ?i, - u,) 1;:‘s dy 
n 

To find the asymptotics of this integral we use the example given in [2] in the 

course of determining the force acting on a body. From the formulas ( 7 ) and (8 ) it 
follows that V (y, x; h, - u,) is the linear operator L of the function --H( 

s, z; u,) itself regarded as a function of z, i.e. 

V (y, 2; a, - u,) = L [y; - H (x, z; u,, h)] = 

L Ix; - H (y, z; - um, h)] = L Is; - H (z, y; u,, &)I 

From this it follows that 

I, (x, 3L) = \ L [x; - H (z, y; II%, A)] (~(0’). ‘74’)) dy f--T. 
h (4.1) 

L fx; - 1, (& h)l, I, (z, h) = 1 fI (z, y; II,, h) (do). V’v(“)) dy 
LIJ 

The integral 1, (z, h) appearing in the above formula has the same asymptotics as 11, i. e. 
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Substituting this expression into (4.1)) we obtain 

J2f (x, h) = f\O’ (x) + g’io’ (x) h In + + 0 (h) (4.2) 

where fi(o) (X) and gi(O) (X) are solutions of the boundary value problems for the 
system of Oseen equations with boundary conditions 

f?‘(x) Ix& = - * s ads) 
H,j (x -y, 0) up(y)--- 

g!l”’ (4 IXES = - ii, 

&,k (Y) dY7 ,i;Fm P(x) = 0 

lim g$O) (x) = 0 
Ix\+= 

Taking into account the first formula of (3.6 ) we can replace in (4.21, the solutions 
fit’) (X) and gi”) (X) of the Oseen boundary value problems by the corresponding 

SOlUtiOnS fi”’ (X) and g,@) (x) of the boundary value problems for the Stokes 
equations. Combining the formulas (3.5 ) and (4.2) in this manner, we obtain 

v(l) (x, h) = wp(x) + wy (x) h In + + 0 (h) (4.3 1 

where woes) (x) denotes th e solution of the inhomogeneous system of Stokes equations 

(s) a&) 
Av-2hgradp=vk az, divv=O 

k 

with boundary conditions v (X) lK~s = 0, limIx+ v (x) = 0, and WI(‘) (X) is 
a solution of the homogeneous system of Stokes equations with boundary conditions 

Substituting (4.3 ) into the first formula of (1.3 ) , we arrive at the following theorem , 
Theorem 3. If the surface S of the body B has a curvature satisfying 

the Hi)lder condition and the function u. (x) is twice continuously differentiable, then 
for 1 x 1 < h-l and sufficiently small J, the solution of the boundary problem (1.1) 
is represented by the asymptotic formula 

ui (x, h) = l‘(io’ (X, h) + 2hwE’ (x) + 2h2 In f wi?’ (x) + 0 (h2) (4.6 1 

(i = 1, 2, 3) 

where Ui’O) (x, h) is the solution of the boundary value problem for the system of Oseen 
equations with boundary conditions from (1.1) . 

6. A flow of viscous fluid past a sphere was solved by Proudman and Pearson in 
[6] using the method of matched asymptotic expansions. Applying the formula (4.6 ) to 
this problem, we obtain an internal expansion of the Proudman and Pearson solution. 
Thus the above internal expansion acquires a vigorous proof within the specified range 

of values of the Reynolds number. 
In conclusion, the author expresses his deep appreciation to K. I. Babenko for valuable advice. 
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